Title: Solvmanifolds and Noncommutative Tori with Real Multiplication
نویسنده
چکیده
We prove that the Shimizu L-function of a real quadratic field is obtained from a (Lorentzian) spectral triple on a noncommutative torus with real multiplication, as an adiabatic limit of the Dirac operator on a 3-dimensional solvmanifold. The Dirac operator on this 3dimensional geometry gives, via the Connes-Landi isospectral deformations, a spectral triple for the noncommutative tori obtained by deforming the fiber tori to noncommutative spaces. The 3-dimensional solvmanifold is the homotopy quotient in the sense of Baum-Connes of the noncommutative space obtained as the crossed product of the noncommutative torus by the action of the units of the real quadratic field. This noncommutative space is identified with the twisted group C∗-algebra of the fundamental group of the 3-manifold. The twisting can be interpreted as the cocycle arising from a magnetic field, as in the theory of the quantum Hall effect. We prove a twisted index theorem that computes the range of the trace on the K-theory of this noncommutative space and gives an estimate on the gaps in the spectrum of the associated Harper operator.
منابع مشابه
Solvmanifolds and noncommutative tori with real multiplication
We prove that the Shimizu L-function of a real quadratic field is obtained from a (Lorentzian) spectral triple on a noncommutative torus with real multiplication, as an adiabatic limit of the Dirac operator on a 3-dimensional solvmanifold. The Dirac operator on this 3-dimensional geometry gives, via the Connes–Landi isospectral deformations, a spectral triple for the noncommutative tori obtaine...
متن کاملNoncommutative Geometry and Arithmetic
This is an overview of recent results aimed at developing a geometry of noncommutative tori with real multiplication, with the purpose of providing a parallel, for real quadratic fields, of the classical theory of elliptic curves with complex multiplication for imaginary quadratic fields. This talk concentrates on two main aspects: the relation of Stark numbers to the geometry of noncommutative...
متن کاملNoncommutative Two-tori with Real Multiplication as Noncommutative Projective Varieties
We define analogues of homogeneous coordinate algebras for noncommutative two-tori with real multiplication. We prove that the categories of standard holomorphic vector bundles on such noncommutative tori can be described in terms of graded modules over appropriate homogeneous coordinate algebras. We give a criterion for such an algebra to be Koszul and prove that the Koszul dual algebra also c...
متن کاملC∗-algebras Associated with Real Multiplication
Noncommutative tori with real multiplication are the irrational rotation algebras that have special equivalence bimodules. Y. Manin proposed the use of noncommutative tori with real multiplication as a geometric framework for the study of abelian class field theory of real quadratic fields. In this paper, we consider the Cuntz-Pimsner algebras constructed by special equivalence bimodules of irr...
متن کاملNoncommutative Tori, Real Multiplication and Line Bundles
This thesis explores an approach to Hilbert's twelfth problem for real quadratic number elds, concerning the determination of an explicit class eld theory for such elds. The basis for our approach is a paper by Manin proposing a theory of Real Multiplication realising such an explicit theory, analogous to the theory of Complex Multiplication associated to imaginary quadratic elds. Whereas ellip...
متن کامل